CRISPR/Cas9系统重大研究进展

2016-08-31 20:19 来源:网友分享

  2016年08月31日讯 基因组编辑技术CRISPR/Cas9被《科学》杂志列为2013年年度十大科技进展之一,受到人们的高度重视。CRISPR是规律间隔性成簇短回文重复序列的简称,Cas是CRISPR相关蛋白的简称。CRISPR/Cas最初是在细菌体内发现的,是细菌用来识别和摧毁抗噬菌体和其他病原体入侵的防御系统。

  史上首次利用CRISPR-Cas9让人细胞变身为记忆存储系统

  在一项新的研究中,来自美国麻省理工学院(MIT)的研究人员设计出一种方法在人细胞的DNA中记录复杂的历史事件,从而允许他们通过对这种DNA进行测序从中找回过去事件的“记忆”。相关研究结果于2016年8月18日在线发表在Science期刊上,论文标题为“Continuous genetic recording with self-targeting CRISPR-Cas in human cells”。论文通信作者为MIT电学工程与计算机科学副教授和生物工程副教授Timothy Lu。论文第一作者为Samuel Perli博士和研究生Cheryl Cui。

  在当前的这项研究中,由MIT开发出的这种新方法是基于基因组编辑系统CRISPR-Cas9实现的,其中这种系统是由一种DNA切割酶Cas9和一种引导这种酶结合到基因组特定位点上并指导它在这个位点进行切割的短链RNA---也被称作向导RNA(gRNA)---组成的。

  CRISPR-Cas9被广泛地用于基因编辑,但是Lu团队决定对它进行改编用于记忆储存。在最初进化出CRISPR-Cas9的细菌中,这种基因组编辑系统记录过去的病毒感染,这样细菌细胞就能够识别和抵抗再次入侵的病毒。

  当利用CRISPR-Cas9对基因进行编辑时,研究人员构建出能够匹配宿主基因组中靶序列的gRNA。为了进行记忆编码,他们采取一种不同的方法:他们设计出识别编码这种gRNA的DNA序列的gRNA,从而产生他们称之为“自我靶向的gRNA(self-targeting guide RNA)”。

  在这种自我靶向的gRNA的引导下,Cas9切割编码这种gRNA的DNA序列,产生一种永久性记录事件发生的突变。这种DNA序列一旦发生突变就会产生新的gRNA来引导Cas9靶向这种新近发生突变的DNA序列,而且只要Cas9是有活性的或者这种自我靶向的RNA仍然表达,就允许突变进一步发生和积累。

  通过细胞内的感应器检测特定生物事件发生来调节Cas9或自我靶向的gRNA的活性,这种系统就能够允许累进性突变作为这些生物事件的函数积累下来,因而提供基因组编码记忆。

  利用CRISPR辅助的纳米显微技术揭示端粒酶探查端粒机制

  在一项新的研究中,美国科罗拉多大学博尔德分校生物前沿研究所主任、特聘教授和诺贝尔奖得主Thomas Cech博士利用CRISPR基因编辑技术、活细胞和单分子显微镜,首次实时地观察端粒酶和端粒之间的这种至关重要的相互作用。

  Cech与论文共同作者Jens Schmidt和Arthur Zaug观察到端粒酶在整个细胞核中扩散,和进行碰撞。端粒酶和端粒在细胞核中并不常见,但有时凑巧会看到前者撞击后者。但是端粒酶附着到端粒的中间位置上时是不会带来任何好处的。为了保护染色体,端粒酶必需附着到它的最末端。因此如果端粒酶撞击到端粒的中间位置,那么它很快脱落下来,再次尝试撞击。Cech和同事们将这成为“探查(probing)”。仅当这种探查导致端粒酶直接撞击到端粒的末端时,它才附着到端粒上,并且逗留在那里。

  Cech团队能够利用CRISPR DNA编辑技术将一种基因插入到制造端粒酶的基因上。这种插入的基因编码一种附着到端粒酶上的荧光蛋白。他们随后利用一些人称作为纳米显微镜的显微技术观察这种荧光蛋白。

  Cech指出这种CRISPR辅助的纳米显微镜(CRISPR-aided nanoscopy)技术将可能被端粒研究领域之外的科学家们使用。他也希望这一发现将有助于筛选抗端粒酶药物。

  利用非同源性DNA片段将CRISPR-Cas9编辑效率提高高达5倍

  CRISPR-Cas9是一种用于在人细胞系中进行基因敲除来发现它们的基因所发挥何种功能的流行技术,但是让基因失去功能的效率存在非常大的差异。

  如今,在一项新的研究中,来自美国加州大学伯克利分校的研究人员在大多数类型的人细胞中,发现一种方法让CRISPR-Cas9切割靶基因和让它们失去功能的效率提高高达5倍,从而能够更加容易构建和研究基因敲除细胞系以及潜在地作为一种人类疗法让一个发生突变的基因失去功能。

  尽管CRISPR-Cas9能够加快制造基因敲除细胞系的过程,但是人们有时必需制造和筛选许多这种基因编辑器的变异体以便发现哪一种发挥得更好。在这项研究中,研究人员发现只需经过简单调整一下就能够更加有效率地开展这个过程。

  关键就是与CRISPR-Cas9分子一起被导入人细胞中的短片段DNA不与人基因组中的任何DNA序列相匹配。这些短片段DNA被称作寡核苷酸,似乎干扰人细胞中的DNA修复机制,从而将比较普通的CRISPR-Cas9的基因编辑效率提高2.5到5倍。

  论文通信作者、加州大学伯克利分校创新基因组计划科技总监、分子与细胞生物学兼任助理教授Jacob Corn说,“它表明如果你做了非常简单的事情---只是将廉价的与人基因组不存在任何同源性的人工合成寡核苷酸导入到细胞中,那么基因编辑效率提高多达5倍。”这种技术提高所有CRISPR-Cas9的编辑效率,即便是初始时完全不会起作用的那些CRISPR-Cas9。

部分文章源于网友分享,本站尊重原创,如有侵权,本站将在第一时间予以删除。
医药科研 实时聚焦 行业新闻 热点推荐
快问号
  • 宝宝护士权威的孕育资讯,帮助家长呵护宝宝健康
  • 医说健康为您讲解人们最关心的健康养生话题,让您轻松掌握健康养生小常识。
  • 葩姐减肥肥肉三层非一日之功,葩姐教你用正确的方法迈出减肥第一步!
  • 揭秘君谣言似妖,小倩姥姥。辟谣除妖,不在山高
  • 漫说健康用漫画阐述健康,让医学也能性感起来!
曝光平台