2017-11-07 10:44 来源:网友分享
血红蛋白最主要也是最重要的功能就是携带、运输氧气,除了氧气,二氧化碳、一氧化碳、还有氰离子也都可以和血红蛋白结合。但是,一氧化碳、氰离子一旦和血红蛋白结合,就会结合得很紧密,这就会导致血红蛋白无法正常地和氧气结合,从而中毒。我们生活中最常见的就是一氧化碳中毒,这是一种特别可怕的事情,患者中毒后会昏迷窒息,抢救不及时的时候甚至会丧失生命。
一、很多人血红蛋白偏低是因为贫血,这种人就应该在平时的饮食当中多多注意,不要挑食、偏食,多吃含铁量丰富的食品。
二、有的人血红蛋白偏低是因为身体某些部位出血,比如女性生理周期期间血量不正常的大量流失。对于这种情况,就可以去询问一下医生的意见,吃一些药。其他部位出血就需要去医院进行一系列的检查,明确它的真正原因,从而对症下药。
三、还有一种情况也可能会造成血红蛋白偏低,就是身体内铁元素大量流失,这个可能跟身体某些器官的机能受损有关,也可能是其他病症的前兆。这时,需要去医院做具体的检查,在医生的指导下,进行相关的治疗。
1、镰状细胞贫血:
患儿出生半岁后易有手和足疼痛肿胀,年长儿诉腹痛、关节和骨骼痛等均因小血管栓塞所致。婴儿有苍白、黄疸和肝脾肿大,年龄增长后有慢性贫血。脾赃由于梗塞后纤维化而转向缩小。年长儿体格可呈四肢过长,躯干短,颅形突起的所谓“镰状细胞贫血体形”。易有下肢溃疡,叶酸缺乏性贫血等合并症,并易感染而引起死亡。本病的杂合子患者称血红蛋白S特征,无症状,于高空飞行或缺氧条件下,可出现红细胞镰变,并表现小血管栓塞所致的症状。
2、血红蛋白E病:
系血红蛋白E纯合子疾患。血红蛋白E是β肽链第26位谷氨酸被赖氨酸所替代。这一氨基酸的替代并不影响血红蛋白正常生理功能,故无明显临床表现。血红蛋白E病的症状轻,病人易疲乏,脾脏轻度肿大,血红蛋白偏低,红细胞不减少,有小细胞低色素贫血的特点。靶形细胞较多见,平均15%—20%。
3、不稳定血红蛋白病:
临床表现为间歇出现轻度甚至严重的溶血性贫血,并有血红蛋白尿。部分病例与G6PD缺陷类似,可因服用氧化剂药物而加重;另一部分病例可无症状。
4、血红蛋白M病:
为常染色体显性遗传性疾病,纯合子者不能存活,杂合子生后出现症状(如为β肽链异常约于3个月后出现症状), 表现为紫绀持续不退,但不出现杵状指(趾),亦无心肺异常体征。紫绀轻重随患儿血中血红蛋白M的含量高低而定。
一、病因:
由多种原因造成,暂无定论。
二、发病机制:
血红蛋白是一种结合蛋白,分子量64,000,由珠蛋白和血红素构成。血红素由原卟啉与亚铁原子组成,每一个珠蛋白分子有二对肽链,一对是α链,由141个氨基酸残基构成,含较多组氨酸,其中α87位(即F8)组氨酸与血红素铁的结合,在运氧中具重要生理作用。另一对是非α链,有β、γ、δ、ξ(结构与α链相似)及ε5种;后2种与α链、γ-链分别组成胚胎早期(妊娠3月以内)血红蛋白、HbGower-1(ζ2ε2)、HbGower-2(α2ε2)、HbPortland(ζ2γ2)。β链含146个氨基酸残基、β93半胱氨酸易被氧化产生混合二硫化物及其它硫醚类物质,可降低血红蛋白稳定性。δ链亦由146个氨基酸残基组成,仅10个氨基酸与β链不同。由于δ链中第22位丙氨酸置换了β22谷氨酸,第116位精氨酸置换了β116组氨酸,因此δ链的正电荷大于β链,HbA2(α2δ2)等电点升高,电泳时靠近负极。γ链虽由146个氨基酸组成,但与β链有39个氨基酸不同,且含有4个异亮氨酸,为α、β与δ链所缺如,因此可用分析异亮氨酸方法以测定HbF(α2γ2)含量。正常人有二种γ链、Gr-r136为甘氨酸,Ar-r136为丙氨酸,说明控制γ链生物合成的基因位点不止一个。初生时Gr与Ar的比例是3∶1,儿童和成人二者之比为2∶3。每一条肽链和一个血红素连接,构成一个血红蛋白单体。人类血红蛋白是由二对(4条)血红蛋白单体聚合而成的四聚体。不同类型的血红蛋白珠蛋白结构略有不同,但血红素均相同。
血红蛋白的四级结构:由氨基酸顺序排列的肽链结构称为血红蛋白的一级结构。肽链中的氨基酸可分为亲水的极化氨基酸(其侧链为羧基、氨基),与非极化的氨基酸(其侧链是芳香族)。肽链中的各种氨基酸的侧链相互拉紧形成α螺旋,螺旋形节段间由短而非螺旋形节段相连。螺旋形节段从N端-C端分别以A-H表示,非螺旋形节段用AB、CD等表示,称为血红蛋白的二级结构。血红素的铁原子有6个配位键,第5个配位键结合在肽链F段第8位氨基酸上(即α链第87位或β链第92位组氨酸的咪唑基上),第6个配位键结合氧,并间接结合在肽链E段的第7位氨基酸上(即α链第58位或β-链第63位组氨酸的咪唑基上),使肽链围绕血红素为中心,构成内外二层螺旋状蛇形盘曲的三维空间结构,称为三级结构。亲水氨基酸分布于外层,使血红蛋白能溶于水而不致沉淀;疏水氨基酸分布于内层,使水分子不能进入血红素腔内部,避免血红素的Fe2 氧化为Fe3 。四个血红蛋白单体(肽链三级结构加血红素),按一定的空间关系结合成四聚体,如HbA(或HbA1,α2β2)、HbA2(α2δ2)及HbF(α2γ2),称异质型四聚体;由二对同样的三级结构血红蛋白单体结合成的四聚体,如HbH(β4)及HbBart(γ4),称为同质型四聚体。以上所述四聚体为血红蛋白四级结构。通过X线衍射研究四聚体的空间关系,发现α1β1及α2β2的接触面较大,相互移动度较小,疏水,有利于血红蛋白分子构型的稳定性。α1β2及α2β1接触面小而不牢固,移动度大,有利于血红蛋白对氧的正常摄取与释放。四聚体解离,首先离解为α1β1及α2β2。综上所述,血红蛋白与分子的外表结构必需完整,带有负电荷;α、β链结合部位要固定,包围血红素腔的氨基酸顺序排列应完整,否则血红蛋白就不能维持分子结构稳定性及正常运输氧生理功能,并易遭破坏。
可行以下检查以明确诊断:
本病分布因地区、民族而异,故应详细询问患者籍贯、民族,临床有无黄疸、贫血、肝脾肿大,生长发育迟缓或紫绀、红细胞增多等;家系中有无同样病史患者。实验室检查包括网织红细胞计数、红细胞压积、周围红细胞形态及红细胞脆性试验,了解有无低色素、小细胞性贫血。如上述检查提示有血红蛋白病可能,应对患者及其家系作下列有关实验室检查,进一步确诊。
1、常用基因诊断方法为抽提全血、干纸片血、羊水细胞、绒毛细胞DNA作DNA点杂交,适用于诊断基因缺失的遗传病,如α海洋性贫血病人α珠蛋白基因不同程度的缺失。
2、限制性内切酶酶谱法,适用于诊断基因突变改变了限制酶切点或DNA缺失而改变酶解片段大小长短的遗传病。
3、限制性片段多态性分析(RFLP),RFLP按孟德尔方式遗传,如某种遗传病基因与特异的RFLP紧密相连,即可将这一多态片段作为"遗传标记",通过RFLP连锁分析推测该家庭成员和胎儿是否携带遗传病基因,RFLP连锁分析适用于诊断任何一种单基因遗传病。
4、寡核苷酸杂交是一种直接基因诊断技术,对于基因突变部位的碱基序列已查明的遗传病,均可以直接检测和鉴定其突变的基因。
5、聚合酶链反应(PCR)DNA体外扩增,此种高效DNA分析技术可以直接通过PCR产物的电泳分析进行基因诊断,适用于诊断基因缺失或部分DNA缺失所致的遗传病。
6、对非缺失型突变基因可结合限制酶切位点的改变,如与RFLP位点相连锁,则可用限制酶消化PCR扩增产物,直接电泳分析,不需应用基因探针进行分子杂交,大大简化实验操作,使基因诊断可在半天内完成。